The FLEXPART-WRF Lagrangian dispersion model (Brioude et al., 2013) is used to describe the forward transport of volcanic ash (e.g., Zerefos et al., 2017; Kampouri et al., 2021), biomass burning particles (e.g., Solomos et al., 2015, 2019) as well as the air-mass backtrajectories and residence times (Papayannis et al., 2016; Solomos et al., 2018; Dimitriou et al., 2021), at meso and local scale resolutions. The model allows WRF-driven dispersion simulations at very high spatial resolutions (from tens of kilometers down to several meters) and temporal resolutions (e.g., hourly wind fields). This configuration is particularly important for areas like Greece that are characterized by mountainous topography and coastlines. Under such circumstances the increased mechanical mixing and the daytime sensible heat sources result in complex PBL structures and convective cells that cannot be reproduced by the global circulation models.
Brioude, J., Arnold, D., Stohl, A., Cassiani, M., Morton, D., Seibert, P., Angevine, W., Evan, S., Dingwell, A., Fast, J.D., Easter, R.C., Pisso, I., Burkhart, J., Wotawa, G., 2013. The Lagrangian particle dispersion model FLEXPART-WRF version 3.1. Geosci. Model. Dev. 6, 1889e1904. http://dx.doi.org/10.5194/gmd-6-1889-2013.
Dimitriou, K., Bougiatioti, A., Ramonet, M., Pierros, F., Michalopoulos, P.,Liakakou, E., Solomos, S., Quehe, P.-Y., Delmotte, M., Gerasopoulos, E., Kanakidou, M., Mihalopoulos,N., Greenhouse gases (CO2 and CH4) at an urban background site in Athens, Greece: Levels, sources and impact of atmospheric circulation, Atmospheric Environment, https://doi.org/10.1016/j.atmosenv.2021.118372.
Kampouri, A.; Amiridis, V.; Solomos, S.; Gialitaki, A.; Marinou, E.; Spyrou, C.; Georgoulias, A.K.; Akritidis, D.; Papagiannopoulos, N.; Mona, L.; Scollo, S.; Tsichla, M.; Tsikoudi, I.; Pytharoulis, I.; Karacostas, T.; Zanis, P. Investigation of Volcanic Emissions in the Mediterranean: “The Etna–Antikythera Connection”. Atmosphere 2021, 12, 40. https://doi.org/10.3390/atmos12010040
Papayannis, A., Argyrouli, A., Bougiatioti, A., Remoundaki, E., Vratolis, S., Nenes, A., Van de Hey, J., Komppula, M., Solomos, S., Kazadzis, S., Banks, R., Labzovskii1, L., Kalogiros, I., Tzanis, C. G., Binietoglou, I., Giannakaki, E., and Zerefos, C. S., From hygroscopic aerosols to cloud droplets: the HygrA-CD Campaign in the Athens basin – An overview, Science of the Total Environment, DOI: 10.1016/j.scitotenv.2016.09.054, 2016
Solomos, S.; Amiridis, V.; Zanis, P.; Gerasopoulos, E.; Sofiou, F.I.; Herekakis, T.; Brioude, J.; Stohl, A.; Kahn, R.A.; Kontoes, C. Smoke dispersion modeling over complex terrain using high resolution meteorological data and satellite observations—The FireHub platform. Atmos. Environ. 2015, 119, 348–361.
Solomos, S.; Gialitaki, A.; Marinou, E.; Proestakis, E.; Amiridis, V.; Baars, H.; Komppula, M.; Ansmann, A. Modeling and remote sensing of an indirect Pyro-Cb formation and biomass transport from Portugal wildfires towards Europe. Atmos. Environ. 2019, 206, 303–315.
Solomos, S., Bougiatioti, A., Soupiona, O., Papayannis, A., Mylonaki, M., Papanikolaou, C., Argyrouli, A., Nenes, A., Effects of regional and local atmospheric dynamics on the aerosol and CCN load over Athens, Atmospheric Environment (2018), doi: https://doi.org/10.1016/ j.atmosenv.2018.10.025., 2018
Zerefos, C. S., Eleftheratos, K., Kapsomenakis, J., Solomos, S., Inness, A., Balis, D., Redondas, A., Eskes, H., Allaart, M., Amiridis, V., Dahlback, A., De Bock, V., Diémoz, H., Engelmann, R., Eriksen, P., Fioletov, V., Gröbner, J., Heikkilä, A., Petropavlovskikh, I., JarosÅ‚awski, J., Josefsson, W., Karppinen, T., Köhler, U., Meleti, C., Repapis, C., Rimmer, J., Savinykh, V., Shirotov, V., Siani, A. M., Smedley, A. R. D., Stanek, M., and Stübi, R.: Detecting volcanic sulfur dioxide plumes in the Northern Hemisphere using the Brewer spectrophotometers, other networks, and satellite observations, Atmos. Chem. Phys., 17, 551-574, doi:10.5194/acp-17-551-2017, 2017